Understanding between-cluster variation in prevalence and limits for how much variation is plausible

Author:

Chatfield Mark D1ORCID,Farewell Daniel M2ORCID

Affiliation:

1. Faculty of Medicine, The University of Queensland, Brisbane, Australia

2. Division of Population Medicine, School of Medicine, Cardiff University, Cardiff, UK

Abstract

In clinical trials and observational studies of clustered binary data, understanding between-cluster variation is essential: in sample size and power calculations of cluster randomised trials, for example, the intra-cluster correlation coefficient is often specified. However, quantifications of between-cluster variation can be unintuitive, and an intra-cluster correlation coefficient as low as 0.04 may correspond to surprisingly large between-cluster differences. We suggest that understanding is improved through visualising the implied distribution of true cluster prevalences – possibly by assuming they follow a beta distribution – or by calculating their standard deviation, which is more readily interpretable than the intra-cluster correlation coefficient. Even so, the bounded nature of binary data complicates the interpretation of variances as primary measures of uncertainty, and entropy offers an attractive alternative. Appealing to maximum entropy theory, we propose the following rule of thumb: that plausible intra-cluster correlation coefficients and standard deviations of true cluster prevalences are both bounded above by the overall prevalence, its complement, and one third. We also provide corresponding bounds for the coefficient of variation, and for a different standard deviation and intra-cluster correlation defined on the log odds scale. Using previously published data, we observe the quantities defined on the log odds scale to be more transportable between studies with different outcomes with different prevalences than the intra-cluster correlation and coefficient of variation. The latter increase and decrease, respectively, as prevalence increases from 0% to 50%, and the same is true for our bounds. Our work will help clinical trialists better understand between-cluster variation and avoid specifying implausibly high values for the intra-cluster correlation in sample size and power calculations.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3