Addressing missing covariates for the regression analysis of competing risks: Prognostic modelling for triaging patients diagnosed with prostate cancer

Author:

Escarela Gabriel1,Ruiz-de-Chavez Juan1,Castillo-Morales Alberto1

Affiliation:

1. Departamento de Matemáticas, Universidad Autónoma Metropolitana – Iztapalapa, Mexico City, Mexico

Abstract

Competing risks arise in medical research when subjects are exposed to various types or causes of death. Data from large cohort studies usually exhibit subsets of regressors that are missing for some study subjects. Furthermore, such studies often give rise to censored data. In this article, a carefully formulated likelihood-based technique for the regression analysis of right-censored competing risks data when two of the covariates are discrete and partially missing is developed. The approach envisaged here comprises two models: one describes the covariate effects on both long-term incidence and conditional latencies for each cause of death, whilst the other deals with the observation process by which the covariates are missing. The former is formulated with a well-established mixture model and the latter is characterised by copula-based bivariate probability functions for both the missing covariates and the missing data mechanism. The resulting formulation lends itself to the empirical assessment of non-ignorability by performing sensitivity analyses using models with and without a non-ignorable component. The methods are illustrated on a 20-year follow-up involving a prostate cancer cohort from the National Cancer Institutes Surveillance, Epidemiology, and End Results program.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3