New clinical trial design borrowing information across patient subgroups based on fusion-penalized regression models

Author:

Kerioui Marion1ORCID,Iasonos Alexia1,Gönen Mithat1,Arfé Andrea1

Affiliation:

1. Department of Biostatistics, Memorial Sloan Kettering Cancer Centre, New York, NY, USA

Abstract

In cancer research, basket trials aim to assess the efficacy of a drug using baskets, wherein patients are organized into subgroups according to their tumor type. In this context, using information borrowing strategy may increase the probability of detecting drug efficacy in active baskets, by shrinking together the estimates of the parameters characterizing the drug efficacy in baskets with similar drug activity. Here, we propose to use fusion-penalized logistic regression models to borrow information in the setting of a phase 2 single-arm basket trial with binary outcome. We describe our proposed strategy and assess its performance via a simulation study. We assessed the impact of heterogeneity in drug efficacy, prevalence of each tumor types and implementation of interim analyses on the operating characteristics of our proposed design. We compared our approach with two existing designs, relying on the specification of prior information in a Bayesian framework to borrow information across similar baskets. Notably, our approach performed well when the effect of the drug varied greatly across the baskets. Our approach offers several advantages, including limited implementation efforts and fast computation, which is essential when planning a new trial as such planning requires intensive simulation studies.

Funder

Francois Wallace Monahan Fellowship by the JLM Benevolent Fund

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3