Robust non-parametric tests for complex-repeated measures problems in ophthalmology

Author:

Brombin Chiara1,Midena Edoardo2,Salmaso Luigi1

Affiliation:

1. Department of Management and Engineering, University of Padova, Padova, Italy

2. Department of Ophthalmology, University of Padova and Fondazione G.B. Bietti, IRCCS, Roma, Italy

Abstract

The NonParametric Combination methodology (NPC) of dependent permutation tests allows the experimenter to face many complex multivariate testing problems and represents a convincing and powerful alternative to standard parametric methods. The main advantage of this approach lies in its flexibility in handling any type of variable (categorical and quantitative, with or without missing values) while at the same time taking dependencies among those variables into account without the need of modelling them. NPC methodology enables to deal with repeated measures, paired data, restricted alternative hypotheses, missing data (completely at random or not), high-dimensional and small sample size data. Hence, NPC methodology can offer a significant contribution to successful research in biomedical studies with several endpoints, since it provides reasonably efficient solutions and clear interpretations of inferential results. Pesarin F. Multivariate permutation tests: with application in biostatistics. Chichester-New York: John Wiley &Sons, 2001; Pesarin F, Salmaso L. Permutation tests for complex data: theory, applications and software. Chichester, UK: John Wiley &Sons, 2010. We focus on non-parametric permutation solutions to two real-case studies in ophthalmology, concerning complex-repeated measures problems. For each data set, different analyses are presented, thus highlighting characteristic aspects of the data structure itself. Our goal is to present different solutions to multivariate complex case studies, guiding researchers/readers to choose, from various possible interpretations of a problem, the one that has the highest flexibility and statistical power under a set of less stringent assumptions. MATLAB code has been implemented to carry out the analyses.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3