Bivariate random effects models for meta-analysis of comparative studies with binary outcomes: Methods for the absolute risk difference and relative risk

Author:

Chu Haitao1,Nie Lei2,Chen Yong3,Huang Yi4,Sun Wei5

Affiliation:

1. Division of Biostatistics, School of Public Health, The Univerity of Minnesota, Minneapolis, USA

2. Division IV, Office of Biostatistics/OTS/CDER/FDA, Spring, USA

3. Division of Biostatistics, School of Public Health, The University of Texas Health Science Center, Houston, USA

4. Departemt of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, USA

5. Department of Biostatistics and Genetics, The Univerity of North Carolina, Chapel Hill, USA.

Abstract

Multivariate meta-analysis is increasingly utilised in biomedical research to combine data of multiple comparative clinical studies for evaluating drug efficacy and safety profile. When the probability of the event of interest is rare, or when the individual study sample sizes are small, a substantial proportion of studies may not have any event of interest. Conventional meta-analysis methods either exclude such studies or include them through ad hoc continuality correction by adding an arbitrary positive value to each cell of the corresponding 2 × 2 tables, which may result in less accurate conclusions. Furthermore, different continuity corrections may result in inconsistent conclusions. In this article, we discuss a bivariate Beta-binomial model derived from Sarmanov family of bivariate distributions and a bivariate generalised linear mixed effects model for binary clustered data to make valid inferences. These bivariate random effects models use all available data without ad hoc continuity corrections, and accounts for the potential correlation between treatment (or exposure) and control groups within studies naturally. We then utilise the bivariate random effects models to reanalyse two recent meta-analysis data sets.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3