Jackknife empirical likelihood confidence regions for the evaluation of continuous-scale diagnostic tests with verification bias

Author:

Wang Binhuan1,Qin Gengsheng2

Affiliation:

1. Division of Biostatistics School of Medicine, New York University, New York, USA

2. Department of Mathematics and Statistics, Georgia State University, Atlanta, USA

Abstract

Recently, Wang and Qin proposed various bias-corrected empirical likelihood confidence regions for any two of the three parameters, sensitivity, specificity, and cut-off value, with the remaining parameter fixed at a given value in the evaluation of a continuous-scale diagnostic test with verification bias. In order to apply those methods, quantiles of the limiting weighted chi-squared distributions of the empirical log-likelihood ratio statistics should be estimated. In order to facilitate application and reduce computation burden, in this paper, jackknife empirical likelihood-based methods are proposed for any pairs of sensitivity, specificity and cut-off value, and asymptotic results can be derived accordingly. The proposed methods can be easily implemented to construct confidence regions for the evaluation of continuous-scale diagnostic tests with verification bias. Simulation studies are conducted to evaluate the finite sample performance and robustness of the proposed jackknife empirical likelihood-based confidence regions in terms of coverage probabilities. Finally, a real case analysis is provided to illustrate the application of new methods.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3