An introduction to the use of physiologically based pharmacokinetic models in risk assessment

Author:

Bailer A J1,Dankovic D A2

Affiliation:

1. Department of Mathematics and Statistics, Miami University, Oxford, Ohio, USA and National Institute for Occupational Safety and Health, USA

2. National Institute for Occupational Safety and Health, USA,

Abstract

Many extrapolation issues surface in quantitative risk assessments. The extrapolation from high-dose animal studies to low-dose human exposures is of particular concern. Physiologically based pharmacokinetic (PBPK) models are often proposed as tools to mitigate the problems of extrapolation. These models provide a representation of the disposition, metabolism, and excretion of xenobiotics that are believed to possess the potential of inducing adverse human health responses. Given a model of xenobiotic disposition that is applicable for multiple species and appropriate for nonlinearity of the xenobiotic biotransformation process, better extrapolation may be possible. Unfortunately, the true structure of these models (e.g. number of compartments, type of metabolism, etc.) is seldom known, and attributes of these models (tissue volumes, partition coefficients, etc.) are often experimentally determined and often only central measures of these quantities are reported. We describe the use of PBPK models in risk assessment, the structural and parameter uncertainty in these models, and provide a simple illustration of how these characteristics can be incorporated in a statistical analysis of PBPK models. Additional complexity in the analysis of variability in the models is also outlined. This discussion is illustrated using data from methylene chloride.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3