Affiliation:
1. Centre for Biostatistics, School of Health Sciences, The University of Manchester, Manchester, UK
2. Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
Abstract
At the break of a pandemic, the protective efficacy of therapeutic interventions needs rapid evaluation. An experimental approach to the problem will not always be appropriate. An alternative route are observational studies, whether based on regional health service data or hospital records. In this paper, we discuss the use of methods of causal inference for the analysis of such data, with special reference to causal questions that may arise in a pandemic. We apply the methods by using the aid of a directed acyclic graph (DAG) representation of the problem, to encode our causal assumptions and to logically connect the scientific questions. We illustrate the usefulness of DAGs in the context of a controversy over the effects of renin aldosterone system inhibitors (RASIs) in hypertensive individuals at risk of (or affected by) severe acute respiratory syndrome coronavirus 2 disease. We consider questions concerning the existence and the directions of those effects, their underlying mechanisms, and the possible dependence of the effects on context variables. This paper describes the cognitive steps that led to a DAG representation of the problem, based on background knowledge and evidence from past studies, and the use of the DAG to analyze our hospital data and assess the interpretive limits of the results. Our study contributed to subverting early opinions about RASIs, by suggesting that these drugs may indeed protect the older hypertensive Covid-19 patients from the consequences of the disease. Mechanistic interaction methods revealed that the benefit may be greater (in a sense to be made clear) in the older stratum of the population.
Subject
Health Information Management,Statistics and Probability,Epidemiology