Penalized variable selection in multi-parameter regression survival modeling

Author:

Jaouimaa Fatima-Zahra1ORCID,Do Ha Il2ORCID,Burke Kevin1

Affiliation:

1. Department of Mathematics and Statistics, University of Limerick, Ireland

2. Department of Statistics, Pukyong National University, Busan, South Korea

Abstract

Standard survival models such as the proportional hazards model contain a single regression component, corresponding to the scale of the hazard. In contrast, we consider the so-called “multi-parameter regression” approach whereby covariates enter the model through multiple distributional parameters simultaneously, for example, scale and shape parameters. This approach has previously been shown to achieve flexibility with relatively low model complexity. However, beyond a stepwise type selection method, variable selection methods are underdeveloped in the multi-parameter regression survival modeling setting. Therefore, we propose penalized multi-parameter regression estimation procedures using the following penalties: least absolute shrinkage and selection operator, smoothly clipped absolute deviation, and adaptive least absolute shrinkage and selection operator. We compare these procedures using extensive simulation studies and an application to data from an observational lung cancer study; the Weibull multi-parameter regression model is used throughout as a running example.

Funder

Irish Research Council

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3