Affiliation:
1. Department of Mathematics and Statistics, University of Limerick, Ireland
2. Department of Statistics, Pukyong National University, Busan, South Korea
Abstract
Standard survival models such as the proportional hazards model contain a single regression component, corresponding to the scale of the hazard. In contrast, we consider the so-called “multi-parameter regression” approach whereby covariates enter the model through multiple distributional parameters simultaneously, for example, scale and shape parameters. This approach has previously been shown to achieve flexibility with relatively low model complexity. However, beyond a stepwise type selection method, variable selection methods are underdeveloped in the multi-parameter regression survival modeling setting. Therefore, we propose penalized multi-parameter regression estimation procedures using the following penalties: least absolute shrinkage and selection operator, smoothly clipped absolute deviation, and adaptive least absolute shrinkage and selection operator. We compare these procedures using extensive simulation studies and an application to data from an observational lung cancer study; the Weibull multi-parameter regression model is used throughout as a running example.
Funder
Irish Research Council
National Research Foundation of Korea
Subject
Health Information Management,Statistics and Probability,Epidemiology