A unified approach to power and sample size determination for log-rank tests under proportional and nonproportional hazards

Author:

Tang Yongqiang1ORCID

Affiliation:

1. Department of Biostatistics, Tesaro, Waltham, MA, USA

Abstract

Log-rank tests have been widely used to compare two survival curves in biomedical research. We describe a unified approach to power and sample size calculation for the unweighted and weighted log-rank tests in superiority, noninferiority and equivalence trials. It is suitable for both time-driven and event-driven trials. A numerical algorithm is suggested. It allows flexible specification of the patient accrual distribution, baseline hazards, and proportional or nonproportional hazards patterns, and enables efficient sample size calculation when there are a range of choices for the patient accrual pattern and trial duration. A confidence interval method is proposed for the trial duration of an event-driven trial. We point out potential issues with several popular sample size formulae. Under proportional hazards, the power of a survival trial is commonly believed to be determined by the number of observed events. The belief is roughly valid for noninferiority and equivalence trials with similar survival and censoring distributions between two groups, and for superiority trials with balanced group sizes. In unbalanced superiority trials, the power depends also on other factors such as data maturity. Surprisingly, the log-rank test usually yields slightly higher power than the Wald test from the Cox model under proportional hazards in simulations. We consider various nonproportional hazards patterns induced by delayed effects, cure fractions, and/or treatment switching. Explicit power formulae are derived for the combination test that takes the maximum of two or more weighted log-rank tests to handle uncertain nonproportional hazards patterns. Numerical examples are presented for illustration.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3