Optimal designs using generalized estimating equations in cluster randomized crossover and stepped wedge trials

Author:

Liu Jingxia1ORCID,Li Fan2ORCID

Affiliation:

1. Division of Public Health Sciences, Department of Surgery and Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA

2. Department of Biostatistics, Yale University, New Haven, CT, USA

Abstract

Cluster randomized crossover and stepped wedge cluster randomized trials are two types of longitudinal cluster randomized trials that leverage both the within- and between-cluster comparisons to estimate the treatment effect and are increasingly used in healthcare delivery and implementation science research. While the variance expressions of estimated treatment effect have been previously developed from the method of generalized estimating equations for analyzing cluster randomized crossover trials and stepped wedge cluster randomized trials, little guidance has been provided for optimal designs to ensure maximum efficiency. Here, an optimal design refers to the combination of optimal cluster-period size and optimal number of clusters that provide the smallest variance of the treatment effect estimator or maximum efficiency under a fixed total budget. In this work, we develop optimal designs for multiple-period cluster randomized crossover trials and stepped wedge cluster randomized trials with continuous outcomes, including both closed-cohort and repeated cross-sectional sampling schemes. Local optimal design algorithms are proposed when the correlation parameters in the working correlation structure are known. MaxiMin optimal design algorithms are proposed when the exact values are unavailable, but investigators may specify a range of correlation values. The closed-form formulae of local optimal design and MaxiMin optimal design are derived for multiple-period cluster randomized crossover trials, where the cluster-period size and number of clusters are decimal. The decimal estimates from closed-form formulae can then be used to investigate the performances of integer estimates from local optimal design and MaxiMin optimal design algorithms. One unique contribution from this work, compared to the previous optimal design research, is that we adopt constrained optimization techniques to obtain integer estimates under the MaxiMin optimal design. To assist practical implementation, we also develop four SAS macros to find local optimal designs and MaxiMin optimal designs.

Funder

Patient-Centered Outcomes Research Institute

Institute of Clinical and Translational Sciences

National Institutes of Health

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3