Combining multiple biomarkers linearly to minimize the Euclidean distance of the closest point on the receiver operating characteristic surface to the perfection corner in trichotomous settings

Author:

Mosier Brian R12ORCID,Bantis Leonidas E1ORCID

Affiliation:

1. University of Kansas Medical Center, Kansas City, KS, USA

2. EMB Statistical Solutions, LLC KS, USA

Abstract

The performance of individual biomarkers in discriminating between two groups, typically the healthy and the diseased, may be limited. Thus, there is interest in developing statistical methodologies for biomarker combinations with the aim of improving upon the individual discriminatory performance. There is extensive literature referring to biomarker combinations under the two-class setting. However, the corresponding literature under a three-class setting is limited. In our study, we provide parametric and nonparametric methods that allow investigators to optimally combine biomarkers that seek to discriminate between three classes by minimizing the Euclidean distance from the receiver operating characteristic surface to the perfection corner. Using this Euclidean distance as the objective function allows for estimation of the optimal combination coefficients along with the optimal cutoff values for the combined score. An advantage of the proposed methods is that they can accommodate biomarker data from all three groups simultaneously, as opposed to a pairwise analysis such as the one implied by the three-class Youden index. We illustrate that the derived true classification rates exhibit narrower confidence intervals than those derived from the Youden-based approach under a parametric, flexible parametric, and nonparametric kernel-based framework. We evaluate our approaches through extensive simulations and apply them to real data sets that refer to liver cancer patients.

Funder

Honorable Tina Brozman Foundation

NIH Clinical and Translational Science Award

National Institute of General Medical Sciences

U.S. Department of Defense

Ovarian Cancer Research Alliance

Biostatistics and Informatics Shared Resource, supported by the National Cancer Institute

Kansas Institute for Precision Medicine Centers of Biomedical Research Excellence, supported by the National Institute of General Medicine Science Award

National Cancer Institute

Masonic Cancer Alliance Partners Advisory Board Grants from The University of Kansas Cancer Center and Children's Mercy

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3