Bayesian cure fraction models with measurement error in the scale mixture of normal distribution

Author:

Marinho Anna R S1,Loschi Rosangela H1ORCID

Affiliation:

1. Departamento de Estatística, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Abstract

Cure fraction models have been widely used to model time-to-event data when part of the individuals survives long-term after disease and are considered cured. Most cure fraction models neglect the measurement error that some covariates may experience which leads to poor estimates for the cure fraction. We introduce a Bayesian promotion time cure model that accounts for both mismeasured covariates and atypical measurement errors. This is attained by assuming a scale mixture of the normal distribution to describe the uncertainty about the measurement error. Extending previous works, we also assume that the measurement error variance is unknown and should be estimated. Three classes of prior distributions are assumed to model the uncertainty about the measurement error variance. Simulation studies are performed evaluating the proposed model in different scenarios and comparing it to the standard promotion time cure fraction model. Results show that the proposed models are competitive ones. The proposed model is fitted to analyze a dataset from a melanoma clinical trial assuming that the Breslow depth is mismeasured.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3