Estimation of the proportion of true null hypotheses under sparse dependence: Adaptive FDR controlling in microarray data

Author:

Biswas Aniket1ORCID,Chakraborty Subrata1,Baruah Vishwa Jyoti2ORCID

Affiliation:

1. Department of Statistics, Dibrugarh University, Dibrugarh, Assam, India;

2. Center for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam, India

Abstract

The proportion of non-differentially expressed genes is an important quantity in microarray data analysis and an appropriate estimate of the same is used to construct adaptive multiple testing procedures. Most of the estimators for the proportion of true null hypotheses based on the thresholding, maximum likelihood and density estimation approaches assume independence among the gene expressions. Usually, sparse dependence structure is natural in modelling associations in microarray gene expression data and hence it is necessary to develop methods for accommodating the sparse dependence well within the framework of existing estimators. We propose a clustering based method to put genes in the same group that are not coexpressed using the estimated high dimensional correlation structure under sparse assumption as dissimilarity matrix. This novel method is applied to three existing estimators for the proportion of true null hypotheses. Extensive simulation study shows that the proposed method improves an existing estimator by making it less conservative and the corresponding adaptive Benjamini-Hochberg algorithm more powerful. The proposed method is applied to a microarray gene expression dataset of colorectal cancer patients and the results show gain in terms of number of differentially expressed genes. The R code is available at https://github.com/aniketstat/Proportiontion-of-true-null-under-sparse-dependence-2021 .

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3