Sparse estimation of gene–gene interactions in prediction models

Author:

Lee Sangin1,Pawitan Yudi2,Ingelsson Erik3,Lee Youngjo4

Affiliation:

1. Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA

2. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

3. Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden

4. Department of Statistics, Seoul National University, Seoul, Korea

Abstract

Current assessment of gene–gene interactions is typically based on separate parallel analysis, where each interaction term is tested separately, while less attention has been paid on simultaneous estimation of interaction terms in a prediction model. As the number of interaction terms grows fast, sparse estimation is desirable from statistical and interpretability reasons. There is a large literature on sparse estimation, but there is a natural hierarchy between the interaction and its corresponding main effects that requires special considerations. We describe random-effect models that impose sparse estimation of interactions under both strong and weak-hierarchy constraints. We develop an estimation procedure based on the hierarchical-likelihood argument and show that the modelling approach is equivalent to a penalty-based method, with the advantage of the models being more transparent and flexible. We compare the procedure with some standard methods in a simulation study and illustrate its application in an analysis of gene–gene interaction model to predict body-mass index.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Secure High-Order Gene Interaction Detecting Method for Infectious Diseases;Computational and Mathematical Methods in Medicine;2022-04-21

2. Content Controlled Spectral Indices for Detection of Hydrothermal Alteration Minerals Based on Machine Learning and Lasso-Logistic Regression Analysis;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3