Model-free screening for variables with treatment interaction

Author:

Bizuayehu Shiferaw B1,Xu Jin12ORCID

Affiliation:

1. School of Statistics, East China Normal University, Shanghai, China

2. Key Laboratory of Advanced Theory and Application in Statistics and Data Science – MOE, East China Normal University, Shanghai, China

Abstract

Precision medicine is a medical paradigm that focuses on making effective treatment decision based on individual patient characteristics. When there are a large amount of patient information, such as patient’s genetic information, medical records and clinical measurements, available, it is of interest to select the covariates which have interactions with the treatment, for example, in determining the individualized treatment regime where only a subset of covariates with treatment interactions involves in decision making. We propose a marginal feature ranking and screening procedure for measuring interactions between the treatment and covariates. The method does not require imposing a specific model structure on the regression model and is applicable in a high dimensional setting. Theoretical properties in terms of consistency in ranking and selection are established. We demonstrate the finite sample performance of the proposed method by simulation and illustrate the applications with two real data examples from clinical trials.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3