An imputation approach for fitting two-part mixed effects models for longitudinal semi-continuous data

Author:

Choo-Wosoba Hyoyoung1ORCID,Kundu Debamita1ORCID,Albert Paul S1

Affiliation:

1. Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, MD, USA

Abstract

Two-part mixed effects models are often used for analyzing longitudinal data with many zeros. Typically, these models are formulated with binary and continuous components separately with random effects that are correlated between the two components. Researchers have developed maximum-likelihood and Bayesian approaches for fitting these models that often require using particular software packages or very specialized software. We propose an imputation approach that will allow practitioners to separately use standard linear and generalized linear mixed models to estimate the fixed effects for two-part mixed effects models with complex random effects structures. An approximation to the conditional distribution of positive measurements given an individual’s pattern of non-zero measurements is proposed that can be easily estimated and then imputed from. We show that for a wide range of parameter values, the imputation approach results in nearly unbiased estimation and can be implemented with standard software. We illustrate the proposed imputation approach for the analysis of longitudinal clinical trial data with many zeros.

Funder

The National Institutes of Health Intramural Research Program

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3