Distribution-free models for latent mixed population responses in a longitudinal setting with missing data

Author:

Zhang Hui1ORCID,Tang Li1,Kong Yuanyuan2,Chen Tian3,Liu Xueyan1,Zhang Zhiwei4ORCID,Zhang Bo5ORCID

Affiliation:

1. Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, USA

2. Liver Research Center, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China

3. Department of Mathematics and Statistics, University of Toledo, Toledo, OH, USA

4. Department of Statistics, University of California, Riverside, CA, USA

5. Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, USA

Abstract

Many biomedical and psychosocial studies involve population mixtures, which consist of multiple latent subpopulations. Because group membership cannot be observed, standard methods do not apply when differential treatment effects need to be studied across subgroups. We consider a two-group mixture in which membership of latent subgroups is determined by structural zeroes of a zero-inflated count variable and propose a new approach to model treatment differences between latent subgroups in a longitudinal setting. It has also been incorporated with the inverse probability weighted method to address data missingness. As the approach builds on the distribution-free functional response models, it requires no parametric distribution model and thereby provides a robust inference. We illustrate the approach with both real and simulated data.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3