On recurrent-event win ratio

Author:

Mao Lu1ORCID,Kim KyungMann1,Li Yi1

Affiliation:

1. Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, USA

Abstract

The win ratio approach proposed by Pocock et al. (2012) has become a popular tool for analyzing composite endpoints of death and non-fatal events like hospitalization. Its standard version, however, draws on the non-fatal event only through the first occurrence. For statistical efficiency and clinical interpretability, we construct and compare different win ratio variants that make fuller use of recurrent events. We pay special attention to a variant called last-event-assisted win ratio, which compares two patients on the cumulative frequency of the non-fatal event, with ties broken by the time of its latest episode. It is shown that last-event-assisted win ratio uses more data than the standard win ratio does but reduces to the latter when the non-fatal event occurs at most once. We further prove that last-event-assisted win ratio rejects the null hypothesis with large probability if the treatment stochastically delays all events. Simulations under realistic settings show that the last-event-assisted win ratio test consistently enjoys higher power than the standard win ratio and other competitors. Analysis of a real cardiovascular trial provides further evidence for the practical advantages of the last-event-assisted win ratio. Finally, we discuss future work to develop meaningful effect size estimands based on the extended rules of comparison. The R-code for the proposed methods is included in the package WR openly available on the Comprehensive R Archive Network.

Funder

National Heart, Lung, and Blood Institute

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3