An introduction to multivariate adaptive regression splines

Author:

Friedman Jerome H1,Roosen Charles B1

Affiliation:

1. Department of Statistics and Stanford Linear Accelerator Center, Stanford University, Stanford, California, USA

Abstract

Multivariate Adaptive Regression Splines (MARS) is a method for flexible modelling of high dimensional data. The model takes the form of an expansion in product spline basis functions, where the number of basis functions as well as the parameters associated with each one (product degree and knot locations) are automatically determined by the data. This procedure is motivated by recursive partitioning (e.g. CART) and shares its ability to capture high order interactions. However, it has more power and flexibility to model relationships that are nearly additive or involve interactions in at most a few variables, and produces continuous models with continuous derivatives. In addition, the model can be represented in a form that separately identifies the additive contributions and those associated with different multivariable interactions. This paper summarizes the basic MARS algorithm, as well as extensions for binary response, categorical predictors, nested variables and missing values. It presents tips on interpreting the output of the standard FORTRAN implementation of MARS, and provides an example of MARS applied to a set of clinical data.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3