An effective technique for diabetic retinopathy using hybrid machine learning technique

Author:

Murthy N Satyanarayana1ORCID,Arunadevi B2

Affiliation:

1. ECE Department, VR Siddhartha Engineering College, Vijayawada, Andhra Pradesh, India

2. Department of Electronics and Communication Engineering, Dr.N.G.P Institute of Technology, Coimbatore, India

Abstract

Diabetic retinopathy (DR) stays as an eye issue that has continuously developed in individuals who experienced diabetes. The complexities in diabetes cause harm to the vein at the back of the retina. In outrageous cases, DR could swift apparition disaster or visual impairment. This genuine impact had the option to charge through convenient treatment and early recognition. As of late, this issue has been spreading quickly, particularly in the working region, which in the end constrained the interest of an analysis of this disease from the most prompt stage. Therefore, that are castoff to protect the progressions of this disorder, revealing of the retinal blood vessels (RBVs) play a foremost role. The growth of an abnormal vessel leads to the development steps of DR, where it can be well known by extracting the RBV. The recognition of the BV for DR by developing an automatic approach is a major aim of our research study. In the proposed method, there are two major steps: one is segmentation and the second one is classification of affected retinal BV. The proposed method uses the Kinetic Gas Molecule Optimization based on centroid initialization used for the Fuzzy C-means Clustering. In the classification step, those segmented images are given as input to hybrid techniques such as a convolution neural network with bidirectional-long short-term memory (CNN with Bi-LSTM). The learning degree of Bi-LSTM is revised by using the self-attention mechanism for refining the classification accuracy. The trial consequences disclosed that the mixture algorithm achieved higher accuracy, specificity, and sensitivity than existing techniques.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3