Clinical dose–response for a broad set of biological products: A model-based meta-analysis

Author:

Wu Joseph1,Banerjee Anindita2,Jin Bo2,Menon Sandeep M3,Martin Steven W4,Heatherington Anne C2

Affiliation:

1. Biometrics and Data Management, Global Product Development, Groton, CT, USA

2. Early Clinical Development, Worldwide Research & Development, Cambridge, MA, USA

3. Statistical Research Consulting Center, Global Product Development, Cambridge, MA, USA

4. Pharmacometrics, Global Product Development, Cambridge, MA, USA

Abstract

Characterizing clinical dose–response is a critical step in drug development. Uncertainty in the dose–response model when planning a dose-ranging study can often undermine efficiency in both the design and analysis of the trial. Results of a previous meta-analysis on a portfolio of small molecule compounds from a large pharmaceutical company demonstrated a consistent dose–response relationship that was well described by the maximal effect model. Biologics are different from small molecules due to their large molecular sizes and their potential to induce immunogenicity. A model-based meta-analysis was conducted on the clinical efficacy of 71 distinct biologics evaluated in 91 placebo-controlled dose–response studies published between 1995 and 2014. The maximal effect model, arising from receptor occupancy theory, described the clinical dose–response data for the majority of the biologics (81.7%, n = 58). Five biologics (7%) with data showing non-monotonic trend assuming the maximal effect model were identified and discussed. A Bayesian model-based hierarchical approach using different joint specifications of prior densities for the maximal effect model parameters was used to meta-analyze the whole set of biologics excluding these five biologics ( n = 66). Posterior predictive distributions of the maximal effect model parameters were reported and they could be used to aid the design of future dose-ranging studies. Compared to the meta-analysis of small molecules, the combination of fewer doses, narrower dosing ranges, and small sample sizes further limited the information available to estimate clinical dose–response among biologics.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3