A Bayesian normal mixture accelerated failure time spatial model and its application to prostate cancer

Author:

Wang Songfeng1,Zhang Jiajia1,Lawson Andrew B2

Affiliation:

1. Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA

2. Division of Biostatistics and Epidemiology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA

Abstract

In the United States, prostate cancer is the third most common cause of death from cancer in males of all ages, and the most common cause of death from cancer in males over age 75. It has been recognized that the incidence of the prostate cancer is high in African Americans, and its occurrence and progression may be impacted by geographical factors. In order to investigate the spatial effects and racial disparities for prostate cancer in Louisiana, in this article we propose a normal mixture accelerated failure time spatial model, which does not require the proportional hazards assumption and allows the multi-model distribution to be modeled. The proposed model is estimated with a Bayesian approach and it can be easily implemented in WinBUGS. Extensive simulations show that the proposed model provides decent flexibility for a variety of parametric error distributions. The proposed method is applied to 2000–2007 Louisiana prostate cancer data set from the Surveillance, Epidemiology and End Results Program. The results reveal the possible spatial pattern and racial disparities for prostate cancer in Louisiana.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3