Affiliation:
1. Department of Statistical Sciences, University of Padova, Italy
2. Department of Statistical Sciences “Paolo Fortunati”, University of Bologna, Italy
Abstract
Statistical evaluation of diagnostic tests, and, more generally, of biomarkers, is a constantly developing field, in which complexity of the assessment increases with the complexity of the design under which data are collected. One particularly prevalent type of data is clustered data, where individual units are naturally nested into clusters. In these cases, Bias can arise from omission, in the evaluation process, of cluster-level effects and/or individual covariates. Focusing on the three-class case and for continuous-valued diagnostic tests, we investigate how to exploit the clustered structure of data within a linear-mixed model approach, both when the assumption of normality holds and when it does not. We provide a method for the estimation of covariate-specific receiver operating characteristic surfaces and discuss methods for the choice of optimal thresholds, proposing three possible estimators. A proof of consistency and asymptotic normality of the proposed threshold estimators is given. All considered methods are evaluated by extensive simulation experiments. As an application, we study the use of the Lysosomal Associated Membrane Protein Family Member 5 gene expression as a biomarker to distinguish among three types of glutamatergic neurons.
Funder
The Ministero dell'Istruzione, dell'Università e della Ricerca-Italy
Subject
Health Information Management,Statistics and Probability,Epidemiology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献