Comparing the MAMS framework with the combination method in multi-arm adaptive trials with binary outcomes

Author:

Abery Julia E1ORCID,Todd Susan1

Affiliation:

1. Department of Mathematics and Statistics, University of Reading, Reading, UK

Abstract

In multi-arm adaptive trials, several treatments are assessed simultaneously and accumulating data are used to inform decisions about the trial, such as whether treatments are dropped or continued. Different methodological approaches have been developed for such trials and research has compared the performance of different subsets of these. One particular approach, for which we use the acronym MAMS(R), has generally not been included in these comparisons because control of the family-wise error rate (FWER) could not be guaranteed. Recently, the MAMS(R) approach has been extended to facilitate the generation of efficient designs which strongly control the FWER. We consider multi-arm two-stage trials with binary outcomes and propose parameterising treatment effects using the log odds ratio. We conduct a simulation study comparing the extended MAMS(R) framework with the well-established combination method both for trials where a different outcome is used for mid-trial analysis and for trials where the same outcome is used throughout. We show how the MAMS(R) framework compares favourably only in scenarios where the same outcome is used. We propose a hybrid selection rule within MAMS(R) methodology and demonstrate that this makes it possible to use the MAMS(R) framework in trials incorporating comparative treatment selection.

Funder

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Facilities for optimizing and designing multiarm multistage (MAMS) randomized controlled trials with binary outcomes;The Stata Journal: Promoting communications on statistics and Stata;2023-09

2. Multi-arm Multi-stage (MAMS) Platform Randomized Clinical Trials;Principles and Practice of Clinical Trials;2022

3. Multi-arm multi-stage clinical trials for time-to-event outcomes;Journal of Biopharmaceutical Statistics;2021-10-04

4. Multi-arm Multi-stage (MAMS) Platform Randomized Clinical Trials;Principles and Practice of Clinical Trials;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3