Variance estimation in tests of clustered categorical data with informative cluster size

Author:

Gregg Mary1ORCID,Datta Somnath2ORCID,Lorenz Doug1

Affiliation:

1. Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA

2. Department of Biostatistics, University of Florida, Gainesville, FL, USA

Abstract

In the analysis of clustered data, inverse cluster size weighting has been shown to be resistant to the potentially biasing effects of informative cluster size, where the number of observations within a cluster is associated with the outcome variable of interest. The method of inverse cluster size reweighting has been implemented to establish clustered data analogues of common tests for independent data, but the method has yet to be extended to tests of categorical data. Many variance estimators have been implemented across established cluster-weighted tests, but potential effects of differing methods on test performance has not previously been explored. Here, we develop cluster-weighted estimators of marginal proportions that remain unbiased under informativeness, and derive analogues of three popular tests for clustered categorical data, the one-sample proportion, goodness of fit, and independence chi square tests. We construct these tests using several variance estimators and show substantial differences in the performance of cluster-weighted tests based on variance estimation technique, with variance estimators constructed under the null hypothesis maintaining size closest to nominal. We illustrate the proposed tests through an application to a data set of functional measures from patients with spinal cord injuries participating in a rehabilitation program.

Funder

National Institutes of Health

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3