Design and analysis of factorial clinical trials: The impact of one treatment's effectiveness on the statistical power and required sample size of the other

Author:

Walter Stephen D.1ORCID,Belo Ian J.2

Affiliation:

1. Department of Health Research Methods, Evidence, and Impact, McMaster University, Canada

2. Department of Mathematics and Statistics, McMaster University, Canada

Abstract

Factorial allow for the simultaneous evaluation of more than one treatment, by randomizing patients to their possible combinations, including control. However, the statistical power of one treatment can be influenced by the effectiveness of the other, a matter that has not been widely recognized. In this paper, we evaluate the relationship between the observed effectiveness of one treatment and the implied power for a second treatment in the same trial, under a range of conditions. We provide analytic and numerical solutions for a binary outcome, under the additive, multiplicative, and odds ratio scales for treatment interaction. We demonstrate how the minimum required sample size for a trial depends on the two treatment effects. Relevant factors include the event rate in the control group, sample size, treatment effect sizes, and Type-I error rate thresholds. We show that that power for one treatment decreases as a function of the observed effectiveness of the other treatment if there is no multiplicative interaction. A similar pattern is observed with the odds ratio scale at low control rates, but at high control rates, power may increase if the first treatment is moderately more effective than its planned value. When treatments do not interact additively, power may either increase or decrease, depending on the control event rate. We also determine where the maximum power occurs for the second treatment. We illustrate these ideas with data from two actual factorial trials. These results can benefit investigators in planning the analysis of factorial clinical trials, in particular, to alert them to the potential for losses in power when one observed treatment effect differs from its originally postulated value. Updating the power calculation and modifying the associated required sample size can then ensure sufficient power for both treatments.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3