Censored quantile regression based on multiply robust propensity scores

Author:

Wang Xiaorui1,Qin Guoyou2ORCID,Song Xinyuan3ORCID,Tang Yanlin1ORCID

Affiliation:

1. Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai, China

2. Department of Biostatistics, School of Public health, Fudan University, Shanghai, China

3. Department of Statistics, The Chinese University of Hong Kong, Hong Kong, China

Abstract

Censored quantile regression has elicited extensive research interest in recent years. One class of methods is based on an informative subset of a sample, selected via the propensity score. Propensity score can either be estimated using parametric methods, which poses the risk of misspecification or obtained using nonparametric approaches, which suffer from “curse of dimensionality.” In this study, we propose a new estimation method based on multiply robust propensity score for censored quantile regression. This method only requires one of the multiple candidate models for propensity score to be correctly specified, and thus, it provides a certain level of resistance to the misspecification of parametric models. Large sample properties, such as the consistency and asymptotic normality of the proposed estimator, are thoroughly investigated. Extensive simulation studies are conducted to assess the performance of the proposed estimator. The proposed method is also applied to a study on human immunodeficiency viruses.

Funder

Research Grant Council of Hong Kong Special Administration Region

National Natural Science Foundation of China

Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science (East China Normal University), Ministry of Education

Natural Science Foundation of Shanghai

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3