Genetic linkage methods for quantitative traits

Author:

Amos Christopher I1,de Andrade Mariza2

Affiliation:

1. Departments of Epidemiology and Biomathematics, UT MD Anderson Cancer, Houston, Texas, USA,

2. Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA

Abstract

We discuss methods for detecting genetic linkage for quantitative data. The usual LOD score method uses a pseudolikelihood formulation and has optimal power provided all parameters are correctly specified, but can lead to erroneous estimates of the location for the locus influencing a trait under misspecification of parameters describing the variance of the trait. Alternative methods, in which attention focuses upon modelling covariation among relatives as a function of genetic marker, similarity lead to unbiased estimates of the location and major gene heritability of the trait influencing locus. The Haseman-Elston approach uses a regression method to perform linkage analysis and its properties have been widely studied. This method is generally less powerful than variance components procedures, but the maximum likelihood-based variance components procedures require normality of the trait to ensure robustness of the genetic linkage tests (i.e. a correct false positive rate). When samples are non-randomly selected an ascertainment correction is generally required in order to obtain unbiased parameter estimates when applying variance components methods. For quantitative traits, ascertainment corrections usually condition either on the proband exceeding a threshold, or on the trait value of the proband. We summarize simulations that show that both approaches lead to similar efficiencies for estimating genetic effects. Finally, we discuss methods for analysing diseases that include time-to-onset information. A variety of methods are available for the linkage analysis of quantitative traits. Here, we have reviewed the most commonly used methods.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3