A unified Bayesian framework for exact inference of area under the receiver operating characteristic curve

Author:

Lin Ruitao1ORCID,Chan KC Gary2,Shi Haolun3

Affiliation:

1. Department of Biostatistics, The University of Texas MD Anderson Cancer Center, USA

2. Department of Biostatistics, University of Washington, USA

3. Department of Statistics and Actuarial Science, Simon Fraser University, Canada

Abstract

The area under the receiver operating characteristic curve is a widely used measure for evaluating the performance of a diagnostic test. Common approaches for inference on area under the receiver operating characteristic curve are usually based upon approximation. For example, the normal approximation based inference tends to suffer from the problem of low accuracy for small sample size. Frequentist empirical likelihood based approaches for area under the receiver operating characteristic curve estimation may perform better, but are usually conducted through approximation in order to reduce the computational burden, thus the inference is not exact. By contrast, we proposed an exact inferential procedure by adapting the empirical likelihood into a Bayesian framework and draw inference from the posterior samples of the area under the receiver operating characteristic curve obtained via a Gibbs sampler. The full conditional distributions within the Gibbs sampler only involve empirical likelihoods with linear constraints, which greatly simplify the computation. To further enhance the applicability and flexibility of the Bayesian empirical likelihood, we extend our method to the estimation of partial area under the receiver operating characteristic curve, comparison of multiple tests, and the doubly robust estimation of area under the receiver operating characteristic curve in the presence of missing test results. Simulation studies confirm the desirable performance of the proposed methods, and a real application is presented to illustrate its usefulness.

Funder

Cancer Prevention and Research Institute of Texas

National Cancer Institute

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Garbage Classification Using Inception V3 as Image Embedding and Extreme Gradient Boosting;2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS);2024-01-28

2. Missing values and inconclusive results in diagnostic studies – A scoping review of methods;Statistical Methods in Medical Research;2023-08-09

3. An Improved CatBoost-Based Classification Model for Ecological Suitability of Blueberries;Sensors;2023-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3