Semiparametric estimation for nonparametric frailty models using nonparametric maximum likelihood approach

Author:

Chee Chew-Seng1,Do Ha Il2,Seo Byungtae3,Lee Youngjo4ORCID

Affiliation:

1. Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Malaysia

2. Department of Statistics, Pukyong National University, South Korea

3. Department of Statistics, Sungkyunkwan University, South Korea

4. Department of Statistics, Seoul National University, South Korea

Abstract

A consequence of using a parametric frailty model with nonparametric baseline hazard for analyzing clustered time-to-event data is that its regression coefficient estimates could be sensitive to the underlying frailty distribution. Recently, there has been a proposal for specifying both the baseline hazard and the frailty distribution nonparametrically, and estimating the unknown parameters by the maximum penalized likelihood method. Instead, in this paper, we propose the nonparametric maximum likelihood method for a general class of nonparametric frailty models, i.e. models where the frailty distribution is completely unspecified but the baseline hazard can be either parametric or nonparametric. The implementation of the estimation procedure can be based on a combination of either the Broyden–Fletcher–Goldfarb–Shanno or expectation-maximization algorithm and the constrained Newton algorithm with multiple support point inclusion. Simulation studies to investigate the performance of estimation of a regression coefficient by several different model-fitting methods were conducted. The simulation results show that our proposed regression coefficient estimator generally gives a reasonable bias reduction when the number of clusters is increased under various frailty distributions. Our proposed method is also illustrated with two data examples.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semiparametric accelerated failure time models under unspecified random effect distributions;Computational Statistics & Data Analysis;2024-07

2. A review of h-likelihood for survival analysis;Japanese Journal of Statistics and Data Science;2021-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3