A novel power prior approach for borrowing historical control data in clinical trials

Author:

Shi Yaru1ORCID,Li Wen2,Liu Guanghan (Frank)1

Affiliation:

1. Late Development Statistics, Biostatistics and Research Decision Sciences, Merck & Co., Inc., North Wales, PA, USA

2. Vaccine Clinical Research & Development, Pfizer, Inc., Collegeville, PA, USA

Abstract

There has been an increased interest in borrowing information from historical control data to improve the statistical power for hypothesis testing, therefore reducing the required sample sizes in clinical trials. To account for the heterogeneity between the historical and current trials, power priors are often considered to discount the information borrowed from the historical data. However, it can be challenging to choose a fixed power prior parameter in the application. The modified power prior approach, which defines a random power parameter with initial prior to control the amount of historical information borrowed, may not directly account for heterogeneity between the trials. In this paper, we propose a novel approach to pick a power prior based on some direct measures of distributional differences between historical control data and current control data under normal assumptions. Simulations are conducted to investigate the performance of the proposed approach compared with current approaches (e.g. commensurate prior, meta-analytic-predictive, and modified power prior). The results show that the proposed power prior improves the study power while controlling the type I error within a tolerable limit when the distribution of the historical control data is similar to that of the current control data. The method is developed for both superiority and non-inferiority trials and is illustrated with an example from vaccine clinical trials.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3