Bayesian hierarchical latent class models for estimating diagnostic accuracy

Author:

Wang Chunling1,Lin Xiaoyan1ORCID,Nelson Kerrie P2ORCID

Affiliation:

1. Department of Statistics, University of South Carolina, Columbia, SC, USA

2. Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA

Abstract

The diagnostic accuracy of a test or rater has a crucial impact on clinical decision making. The assessment of diagnostic accuracy for multiple tests or raters also merits much attention. A Bayesian hierarchical conditional independence latent class model for estimating sensitivities and specificities for a large group of tests or raters is proposed, which is applicable to both with-gold-standard and without-gold-standard situations. Through the hierarchical structure, not only are the sensitivities and specificities of individual tests estimated, but also the diagnostic performance of the whole group of tests. For a small group of tests or raters, the proposed model is further extended by introducing pairwise covariances between tests to improve the fitting and to allow for more modeling flexibility. Correlation residual analysis is applied to detect any significant covariance between multiple tests. Just Another Gibbs Sampler (JAGS) implementation is efficiently adopted for both models. Three real data sets from literature are analyzed to explicitly illustrate the proposed methods.

Funder

the United States National Institutes of Health

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3