Sensitivity analysis for non-monotone missing binary data in longitudinal studies: Application to the NIDA collaborative cocaine treatment study

Author:

Fitzmaurice Garrett M12ORCID,Lipsitz Stuart R34,Weiss Roger D12

Affiliation:

1. Division of Alcohol and Drug Abuse, McLean Hospital, Belmont, MA, USA

2. Department of Psychiatry, Harvard Medical School, Boston, MA, USA

3. Division of General Internal Medicine, Brigham and Women’s Hospital, Boston, MA, USA

4. Department of Medicine, Harvard Medical School, Boston, MA, USA

Abstract

Conventional approaches for handling missingness in substance use disorder trials commonly rely upon a single deterministic “worst value” imputation that posits a perfect relationship between missingness and drug use (“missing value = presumed drug use”); this yields biased estimates of treatment effects and their standard errors. Instead, deterministic imputations should be replaced by probabilistic versions that encode researchers prior beliefs that those with missing data are more likely to be using drugs at those occasions. Motivated by this problem, we present a method for handling non-monotone missing binary data in longitudinal studies. Specifically, we consider a joint model that combines a not missing at random (NMAR) selection model with a generalized linear mixed model for longitudinal binary data. The selection model links the distribution of a missing outcome to the corresponding distribution of the outcome for those observed at that occasion via a fixed and known sensitivity parameter. The mixed model for longitudinal binary data assumes the random effects have bridge distributions; the latter yields regression parameters that have both subject-specific and marginal interpretations. This approach is completely transparent about what is being assumed about missing data and can be used as the basis for sensitivity analysis.

Funder

National Institutes of Health, National Institute on Drug Abuse

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3