Impact of minimal sufficient balance, minimization, and stratified permuted blocks on bias and power in the estimation of treatment effect in sequential clinical trials with a binary endpoint

Author:

Lauzon Steven D1ORCID,Zhao Wenle2,Nietert Paul J2ORCID,Ciolino Jody D3ORCID,Hill Michael D4,Ramakrishnan Viswanathan2

Affiliation:

1. Eli Lilly & Company, Indianapolis, IN, USA

2. Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA

3. Department of Preventive Medicine, Northwestern University, Chicago, IL, USA

4. Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada

Abstract

Minimization is among the most common methods for controlling baseline covariate imbalance at the randomization phase of clinical trials. Previous studies have found that minimization does not preserve allocation randomness as well as other methods, such as minimal sufficient balance, making it more vulnerable to allocation predictability and selection bias. Additionally, minimization has been shown in simulation studies to inadequately control serious covariate imbalances when modest biased coin probabilities (≤0.65) are used. This current study extends the investigation of randomization methods to the analysis phase, comparing the impact of treatment allocation methods on power and bias in estimating treatment effects on a binary outcome using logistic regression. Power and bias in the estimation of treatment effect was found to be comparable across complete randomization, minimization, and minimal sufficient balance in unadjusted analyses. Further, minimal sufficient balance was found to have the most modest impact on power and the least bias in covariate-adjusted analyses. The minimal sufficient balance method is recommended for use in clinical trials as an alternative to minimization when covariate-adaptive subject randomization takes place.

Funder

National Institute of General Medical Sciences

National Center for Advancing Translational Sciences

National Institute of Neurological Disorders and Stroke

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3