Conditional independence test by generalized Kendall’s tau with generalized odds ratio

Author:

Ji Shuang1,Ning Jing2,Qin Jing3,Follmann Dean3

Affiliation:

1. Morgan Stanle, New York, NY, USA

2. Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

3. Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA

Abstract

Determining conditional dependence is a challenging but important task in both model building and in applications such as genetic association studies and graphical models. Research on this topic has focused on kernel-based methods or has used categorical conditioning variables because of the challenge of the curse of dimensionality. To overcome this challenge, we propose a class of tests for conditional independence without any restriction on the distribution of the conditioning variables. The proposed test statistic can be treated as a generalized weighted Kendall’s tau, in which the generalized odds ratio is utilized as a weight function to account for the distance between different values of the conditioning variables. The test procedure has desirable asymptotic properties and is easy to implement. We evaluate the finite sample performance of the proposed test through simulation studies and illustrate it using two real data examples.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3