Data-driven clustering of infectious disease incidence into age groups

Author:

Yaari Rami1ORCID,Huppert Amit12,Dattner Itai3

Affiliation:

1. Bio-statistical and Bio-mathematical Unit, The Gertner Institute for Epidemiology and Health Policy Research, Chaim Sheba Medical Center, Tel Hashomer, Israel

2. School of Public Health, the Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel

3. Department of Statistics, University of Haifa, Haifa, Israel

Abstract

Understanding the patterns of infectious diseases spread in the population is an important element of mitigation and vaccination programs. A major and common characteristic of most infectious diseases is age-related heterogeneity in the transmission, which potentially can affect the dynamics of an epidemic as manifested by the pattern of disease incidence in different age groups. Currently there are no statistical criteria of how to partition the disease incidence data into clusters. We develop the first data-driven methodology for deciding on the best partition of incidence data into age-groups, in a well defined statistical sense. The method employs a top-down hierarchical partitioning algorithm, with a stopping criteria based on multiple hypotheses significance testing controlling the family wise error rate. The type one error and statistical power of the method are tested using simulations. The method is then applied to Covid-19 incidence data in Israel, in order to extract the significant age-group clusters in each wave of the epidemic.

Funder

United States-Israel Binational Science Foundation

German-Israeli Foundation for Scientific Research and Development

Israel Science Foundation

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient estimation of the number of clusters for high-dimension data;The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology;2023-12-06

2. Digital twins and the future of precision mental health;Frontiers in Psychiatry;2023-03-13

3. Immune Remodeling during Aging and the Clinical Significance of Immunonutrition in Healthy Aging;Aging and disease;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3