C-mix: A high-dimensional mixture model for censored durations, with applications to genetic data

Author:

Bussy Simon12ORCID,Guilloux Agathe3,Gaïffas Stéphane45,Jannot Anne-Sophie67

Affiliation:

1. Theoretical and Applied Statistics Laboratory, Pierre and Marie Curie University, Paris, France

2. Laboratoire de Probabilités Statistique et Modélisation (LPSM), UMR 8001, Sorbonne University, Paris, France

3. LAMME, Univ Evry, CNRS, Université Paris-Saclay, Evry, France

4. Center for Applied Mathematics, Ecole Polytechnique, Palaiseau, France

5. LPMA, UMR CNRS 7599, Paris Diderot University, Paris, France

6. Assistance Publique-Hôpitaux de Paris, Biomedical Informatics and Public Health Department, European Georges Pompidou Hospital, Paris, France

7. INSERM UMRS 1138, Eq22, Centre de Recherche des Cordeliers, Université Paris Descartes, Paris, France

Abstract

We introduce a supervised learning mixture model for censored durations (C-mix) to simultaneously detect subgroups of patients with different prognosis and order them based on their risk. Our method is applicable in a high-dimensional setting, i.e. with a large number of biomedical covariates. Indeed, we penalize the negative log-likelihood by the Elastic-Net, which leads to a sparse parameterization of the model and automatically pinpoints the relevant covariates for the survival prediction. Inference is achieved using an efficient Quasi-Newton Expectation Maximization algorithm, for which we provide convergence properties. The statistical performance of the method is examined on an extensive Monte Carlo simulation study and finally illustrated on three publicly available genetic cancer datasets with high-dimensional covariates. We show that our approach outperforms the state-of-the-art survival models in this context, namely both the CURE and Cox proportional hazards models penalized by the Elastic-Net, in terms of C-index, AUC( t) and survival prediction. Thus, we propose a powerful tool for personalized medicine in cancerology.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3