Mortality and morbidity peaks modeling: An extreme value theory approach

Author:

Chiu Y1,Chebana F1,Abdous B2,Bélanger D13,Gosselin P14

Affiliation:

1. Institut national de la recherche scientifique, centre ETE, Québec, Canada

2. Département de médecine sociale et préventive, Université Laval, Québec, Canada

3. Centre de recherche du centre hospitalier universitaire de Québec, Québec, Canada

4. Institut national de santé publique du Québec, Québec, Canada

Abstract

Hospitalizations and deaths belong to the most studied health variables in public health. Those variables are usually analyzed through mean events and trends, based on the whole dataset. However, this approach is not appropriate to comprehend health outcome peaks which are unusual events that strongly impact the health care network (e.g. overflow in hospital emergency rooms). Peaks can also be of interest in etiological research, for instance when analyzing relationships with extreme exposures (meteorological conditions, air pollution, social stress, etc.). Therefore, this paper aims at modeling health variables exclusively through the peaks, which is rarely done except over short periods. Establishing a rigorous and general methodology to identify peaks is another goal of this study. To this end, the extreme value theory appears adequate with statistical tools for selecting and modeling peaks. Selection and analysis for deaths and hospitalizations peaks using extreme value theory have not been applied in public health yet. Therefore, this study also has an exploratory goal. A declustering procedure is applied to the raw data in order to meet extreme value theory requirements. The application is done on hospitalization and death peaks for cardiovascular diseases, in the Montreal and Quebec metropolitan communities (Canada) for the period 1981–2011. The peak return levels are obtained from the modeling and can be useful in hospital management or planning future capacity needs for health care facilities, for example. This paper focuses on one class of diseases in two cities, but the methodology can be applied to any other health peaks series anywhere, as it is data driven.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3