Joint modelling for organ transplantation outcomes for patients with diabetes and the end-stage renal disease

Author:

Dong Jianghu(James)1,Wang Shijia1,Wang Liangliang1,Gill Jagbir2,Cao Jiguo1

Affiliation:

1. Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, Canada

2. Department of Medicine, University of British Columbia, Vancouver, Canada

Abstract

This article is motivated by jointly modelling longitudinal and time-to-event clinical data of patients with diabetes and end-stage renal disease. All patients are on the waiting list for the pancreas transplant after kidney transplant, and some of them have a pancreas transplant before kidney transplant failure or death. Scant literature has studied the dynamical joint relationship of the estimated glomerular filtration rates trajectory, the effect of pancreas transplant, and time-to-event outcomes, although it remains an important clinical question. In an attempt to describe the association in the multiple outcomes, we propose a new joint model with a longitudinal submodel and an accelerated failure time submodel, which are linked by some latent variables. The accelerated failure time submodel is used to determine the relationship of the time-to-event outcome with all predictors. In addition, the piecewise linear function in the survival submodel is used to calculate the dynamic hazard ratio curve of a time-dependent side event, because the effect of the side event on the time-to-event outcome is non-proportional. The model parameters are estimated with a Monte Carlo EM algorithm. The finite sample performance of the proposed method is investigated in simulation studies. Our method is demonstrated by fitting the joint model for the clinical data of 13,635 patients with diabetes and the end-stage renal disease.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3