Causal inference with multiple concurrent medications: A comparison of methods and an application in multidrug-resistant tuberculosis

Author:

Siddique Arman Alam1,Schnitzer Mireille E2ORCID,Bahamyirou Asma2ORCID,Wang Guanbo3,Holtz Timothy H4,Migliori Giovanni B5,Sotgiu Giovanni6,Gandhi Neel R7,Vargas Mario H89,Menzies Dick1011,Benedetti Andrea31011

Affiliation:

1. Department of Statistics, McMaster University, Hamilton, Canada

2. Faculty of Pharmacy, Université de Montréal, Montreal, Canada

3. Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Canada

4. Division of Global HIV and TB, Centers for Disease Control and Prevention, New Delhi, India

5. World Health Organization Collaborating Centre for Tuberculosis and Lung Diseases, Fondazione S. Maugeri, Tradate, Italy

6. Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy

7. Rollins School of Public Health and Emory School of Medicine, Emory University, Atlanta, USA

8. Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico

9. Unidad de Investigación Médica en Enfermedades Respiratorias, Instituto Mexicano del Seguro Social, Mexico City, Mexico

10. Respiratory Epidemiology and Clinical Research Institute, McGill University Health Centre, Montreal, Canada

11. Department of Medicine, McGill University, Montreal, Canada

Abstract

This paper investigates different approaches for causal estimation under multiple concurrent medications. Our parameter of interest is the marginal mean counterfactual outcome under different combinations of medications. We explore parametric and non-parametric methods to estimate the generalized propensity score. We then apply three causal estimation approaches (inverse probability of treatment weighting, propensity score adjustment, and targeted maximum likelihood estimation) to estimate the causal parameter of interest. Focusing on the estimation of the expected outcome under the most prevalent regimens, we compare the results obtained using these methods in a simulation study with four potentially concurrent medications. We perform a second simulation study in which some combinations of medications may occur rarely or not occur at all in the dataset. Finally, we apply the methods explored to contrast the probability of patient treatment success for the most prevalent regimens of antimicrobial agents for patients with multidrug-resistant pulmonary tuberculosis.

Funder

National Institutes of Health

Natural Sciences and Engineering Research Council of Canada

Canadian Institutes of Health Research

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3