A latent class approach for joint modeling of a time-to-event outcome and multiple longitudinal biomarkers subject to limits of detection

Author:

Li Menghan1,Lee Ching-Wen2,Kong Lan1ORCID

Affiliation:

1. Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA

2. Parexel International Co., Ltd., Taiwan

Abstract

Multiple biomarkers on different biological pathways are often measured over time to investigate the complex mechanism of disease development and progression. Identification of informative subpopulation patterns of longitudinal biomarkers and clinical endpoint may assist in risk stratification and provide insights into new therapeutic targets. Motivated by a multicenter study to assess the inflammatory markers of sepsis in patients with community-acquired pneumonia, we propose a joint latent class analysis of multiple biomarkers and a time-to-event outcome while accounting for censored biomarker measurements due to detection limits. The interrelationship between biomarker trajectories and clinical endpoint is fully captured by a latent class structure, which reveals the subpopulation profiles of biomarkers and clinical outcome. The estimation of joint latent class models becomes more complicated when biomarkers are subject to detection limits. Based on a Metropolis–Hastings method, we develop a Monte Carlo Expectation–Maximization (MCEM) algorithm to estimate model parameters. We demonstrate the satisfactory performance of our MCEM algorithm using simulation studies, and apply our method to the motivating study to examine the heterogeneous patterns of cytokine responses to pneumonia and associated mortality risks.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3