Affiliation:
1. Department of Biostatistics, University at Buffalo – The State University of New York, Buffalo, NY, USA
Abstract
The medical care expenditure is historically an important public health issue, which greatly impacts the government’s health policies as well as patients’ financial and medical decisions. In population health research, we commonly discretize a numeric attribute to a few ordinal groups to examine population characteristics. Oftentimes, the population marginal mean estimation by the ANOVA approach is inflexible since it uses pre-defined grouping of the covariate. In this paper, we propose a method to estimate the population marginal mean using the B-spline-based regression in a manner of a generalized additive model as an alternative for the ANOVA. Since the medical expenditure is always nonnegative, a Bayesian approach is also implemented for the nonnegative constraint on the marginal mean estimates. The proposed method is flexible to estimate marginal means for user-specified grouping after model fitting in a post-hoc manner, a clear advantage over the ANOVA approach. We show that this method is inferentially superior to the ANOVA through theoretical investigations and an extensive Monte Carlo study. The real data analysis using Medical Expenditure Panel Survey data assisted by some visualization tools demonstrates an applicability of the proposed approach and leads us some interesting observations that may be relevant to public health discussions.
Subject
Health Information Management,Statistics and Probability,Epidemiology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献