A natural history and copula-based joint model for regional and distant breast cancer metastasis

Author:

Gasparini Alessandro1ORCID,Humphreys Keith1

Affiliation:

1. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

Abstract

The few existing statistical models of breast cancer recurrence and progression to distant metastasis are predominantly based on multi-state modelling. While useful for summarising the risk of recurrence, these provide limited insight into the underlying biological mechanisms and have limited use for understanding the implications of population-level interventions. We develop an alternative, novel, and parsimonious approach for modelling latent tumour growth and spread to local and distant metastasis, based on a natural history model with biologically inspired components. We include marginal sub-models for local and distant breast cancer metastasis, jointly modelled using a copula function. Different formulations (and correlation shapes) are allowed, thus we can incorporate and directly model the correlation between local and distant metastasis flexibly and efficiently. Submodels for the latent cancer growth, the detection process, and screening sensitivity, together with random effects to account for between-patients heterogeneity, are included. Although relying on several parametric assumptions, the joint copula model can be useful for understanding – potentially latent – disease dynamics, obtaining patient-specific, model-based predictions, and studying interventions at a population level, for example, using microsimulation. We illustrate this approach using data from a Swedish population-based case-control study of postmenopausal breast cancer, including examples of useful model-based predictions.

Funder

Swedish e-Science Research Centre

Swedish Research Council

Cancerfonden

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3