Bi-level variable selection for case-cohort studies with group variables

Author:

Kim Soyoung1ORCID,Woo Ahn Kwang1

Affiliation:

1. Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA

Abstract

The case-cohort design is an economical approach to estimate the effect of risk factors on the survival outcome when collecting exposure information or covariates on all patients is expensive in a large cohort study. Variables often have group structure such as categorical variables and highly correlated continuous variables. The existing literature for case-cohort data is limited to identifying non-zero variables at individual level only. In this article, we propose a bi-level variable selection method to select non-zero group and within-group variables for case-cohort data when variables have group structure. The proposed method allows the number of variables to diverge as the sample size increases. The asymptotic properties of the estimator including bi-level variable selection consistency and the asymptotic normality are shown. We also conduct simulations to compare our proposed method with some existing method and apply them to the Busselton Health data.

Funder

National Cancer Institute

American Cancer Society

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3