Statistical tests for latent class in censored data due to detection limit

Author:

He Hua1ORCID,Tang Wan2ORCID,Kelly Tanika1,Li Shengxu3,He Jiang1

Affiliation:

1. Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA

2. Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA

3. Children’s Minnesota Research Institute, Children’s Hospitals and Clinics of Minnesota Medicine, Minneapolis, MN, USA

Abstract

Measures of substance concentration in urine, serum or other biological matrices often have an assay limit of detection. When concentration levels fall below the limit, the exact measures cannot be obtained. Instead, the measures are censored as only partial information that the levels are under the limit is known. Assuming the concentration levels are from a single population with a normal distribution or follow a normal distribution after some transformation, Tobit regression models, or censored normal regression models, are the standard approach for analyzing such data. However, in practice, it is often the case that the data can exhibit more censored observations than what would be expected under the Tobit regression models. One common cause is the heterogeneity of the study population, caused by the existence of a latent group of subjects who lack the substance measured. For such subjects, the measurements will always be under the limit. If a censored normal regression model is appropriate for modeling the subjects with the substance, the whole population follows a mixture of a censored normal regression model and a degenerate distribution of the latent class. While there are some studies on such mixture models, a fundamental question about testing whether such mixture modeling is necessary, i.e. whether such a latent class exists, has not been studied yet. In this paper, three tests including Wald test, likelihood ratio test and score test are developed for testing the existence of such latent class. Simulation studies are conducted to evaluate the performance of the tests, and two real data examples are employed to illustrate the tests.

Funder

hua he

Jiang He

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3