Detecting rare haplotypes associated with complex diseases using both population and family data: Combined logistic Bayesian Lasso

Author:

Zhou Xiaofei1,Wang Meng2,Lin Shili1ORCID

Affiliation:

1. Department of Statistics, The Ohio State University, Columbus, OH, USA

2. Battelle Center for Mathematical Medicine, Nationwide Children’s Hospital, Columbus, OH, USA

Abstract

Haplotype-based association methods have been developed to understand the genetic architecture of complex diseases. Compared to single-variant-based methods, haplotype methods are thought to be more biologically relevant, since there are typically multiple non-independent genetic variants involved in complex diseases, and the use of haplotypes implicitly accounts for non-independence caused by linkage disequilibrium. In recent years, with the focus moving from common to rare variants, haplotype-based methods have also evolved accordingly to uncover the roles of rare haplotypes. One particular approach is regularization-based, with the use of Bayesian least absolute shrinkage and selection operator (Lasso) as an example. This type of methods has been developed for either case-control population data (the logistic Bayesian Lasso (LBL)) or family data (family-triad-based logistic Bayesian Lasso (famLBL)). In some situations, both family data and case-control data are available; therefore, it would be a waste of resources if only one of them could be analyzed. To make full usage of available data to increase power, we propose a unified approach that can combine both case-control and family data (combined logistic Bayesian Lasso (cLBL)). Through simulations, we characterized the performance of cLBL and showed the advantage of cLBL over existing methods. We further applied cLBL to the Framingham Heart Study data to demonstrate its utility in real data applications.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3