Joint analysis of recurrence and termination: A Bayesian latent class approach

Author:

Xu Zhixing1,Sinha Debajyoti1,Bradley Jonathan R1ORCID

Affiliation:

1. Department of Statistics, Florida State University, Tallahassee, FL, USA

Abstract

Like many other clinical and economic studies, each subject of our motivating transplant study is at risk of recurrent events of non-fatal tissue rejections as well as the terminating event of death due to total graft rejection. For such studies, our model and associated Bayesian analysis aim for some practical advantages over competing methods. Our semiparametric latent-class-based joint model has coherent interpretation of the covariate (including race and gender) effects on all functions and model quantities that are relevant for understanding the effects of covariates on future event trajectories. Our fully Bayesian method for estimation and prediction uses a complete specification of the prior process of the baseline functions. We also derive a practical and theoretically justifiable partial likelihood-based semiparametric Bayesian approach to deal with the analysis when there is a lack of prior information about baseline functions. Our model and method can accommodate fixed as well as time-varying covariates. Our Markov Chain Monte Carlo tools for both Bayesian methods are implementable via publicly available software. Our Bayesian analysis of transplant study and simulation study demonstrate practical advantages and improved performance of our approach.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian spatial cluster signal learning with application to adverse event (AE);Journal of Biopharmaceutical Statistics;2024-03-21

2. Bayesian semi-parametric inference for clustered recurrent events with zero inflation and a terminal event;Journal of the Royal Statistical Society Series C: Applied Statistics;2024-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3