Factorial survival analysis for treatment effects under dependent censoring

Author:

Emura Takeshi12ORCID,Ditzhaus Marc3,Dobler Dennis4ORCID,Murotani Kenta2

Affiliation:

1. Department of Statistical Data Science, The Institute of Statistical Mathematics, Tokyo, Japan

2. Biostatistics Center, Kurume University, Kurume, Fukuoka, Japan

3. Faculty of Mathematics, Otto-von-Guericke University Magdeburg, Saxony-Anhalt, Germany

4. Department of Mathematics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, North Holland, The Netherlands

Abstract

Factorial analyses offer a powerful nonparametric means to detect main or interaction effects among multiple treatments. For survival outcomes, for example, from clinical trials, such techniques can be adopted for comparing reasonable quantifications of treatment effects. The key difficulty to solve in survival analysis concerns the proper handling of censoring. So far, all existing factorial analyses for survival data have been developed under the independent censoring assumption, which is too strong for many applications. As a solution, the central aim of this article is to develop new methods for factorial survival analyses under quite general dependent censoring regimes. This will be accomplished by combining existing nonparametric methods for factorial survival analyses with techniques developed for survival copula models. As a result, we will present an appealing F-test that exhibits sound performance in our simulation study. The new methods are illustrated in a real data analysis. We implement the proposed method in an R function surv.factorial(.) in the R package compound.Cox.

Funder

Deutsche Forschungsgemeinschaft

Japan Society for the Promotion of Science

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3