Analysis of Partially Observed Clustered Data using Generalized Estimating Equations and Multiple Imputation

Author:

Aloisio Kathryn M.1,Micali Nadia2,Swanson Sonja A.3,Field Alison3,Horton Nicholas J.4

Affiliation:

1. Smith College Northampton, MA

2. University College London London, UK

3. Harvard School of Public Health Boston, MA

4. Amherst College Amherst, MA

Abstract

Clustered data arise in many settings, particularly within the social and biomedical sciences. For example, multiple-source reports are commonly collected in child and adolescent psychiatric epidemiologic studies where researchers use various informants (for instance, parents and adolescents) to provide a holistic view of a subject's symptoms. Fitzmaurice et al. (1995, American Journal of Epidemiology 142: 1194–1203) have described estimation of multiple-source models using a standard generalized estimating equation (GEE) framework. However, these studies often have missing data because additional stages of consent and assent are required. The usual GEE is unbiased when data are missing completely at random in the context of Little and Rubin (2002, Statistical Analysis with Missing Data [Wiley]). This is a strong assumption that may not be tenable. Other options, such as the weighted GEE, are computationally challenging when missingness is nonmonotone. Multiple imputation is an attractive method to fit incomplete data models while requiring only the less restrictive missing-at-random assumption. Previously, estimation of partially observed clustered data was computationally challenging. However, recent developments in Stata have facilitated using them in practice. We demonstrate how to use multiple imputation in conjunction with a GEE to investigate the prevalence of eating disorder symptoms in adolescents as reported by parents and adolescents and to determine the factors associated with concordance and prevalence. The methods are motivated by the Avon Longitudinal Study of Parents and their Children, a cohort study that enrolled more than 14,000 pregnant mothers in 1991–92 and has followed the health and development of their children at regular intervals. While point estimates for the missing-at-random model were fairly similar to those for the GEE under missing completely at random, the missing-at-random model had smaller standard errors and required less stringent assumptions regarding missingness.

Publisher

SAGE Publications

Subject

Mathematics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3